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Problems of the theory of cracks have recently attracted a great
deal of attention. Finding accurate solutions for systems of cracks pre-
sents considerable mathematical difficulties. An approximate solution
of a static problem of the theory of equilibrium cracks is given in [1].
The hypothesis formulated in [11 is used in this article in which the
problem of interaction of Griffith cracks in an elasto-brittle material
is analyzed and the accuracy of the solution obtained is estimated.

Let an infinite isotropic body contain an infinitely large number
of cracks of a length 21, parallel to the axis of abscissas and spaced
at a distance of 2h from each other. A constant pressure p is acting in=-
side each crack along the length 27. In view of the symmetry of the
system, our considerations may be confined to a band 0 = y = h whose
lower edge coincides with the longitudinal crack axis, its upper edge
being halfway between two adjacent cracks. The problem is to find
the relationship between p, h and I if all the elastic constants and the
cohesion modulus are known,

Let us consider plane deformation. In this case the stress tensor
components 0y, dy, and oy, and displacement vecror components u
and v are expressed through'two analytical functions ¢(2) and $(z) and
their derivatives by the Kolosov-Kuskhelishvili formulass

o+ o,= 29" (2 +¢ (2], ®
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Wt =wp @@ @ —FE =3-H) @

Here v is the Poisson ratio and y shear modulus,
The boundary conditions will be
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The stress tensor components at infinity behave as
G () =0 (™ at r— oo (M
Introducing in accordance with [1] an assumption
Ooy=0y a y=0, (8

we can formulate the problem in terms of one analytical function
o' (2)

Reg'(a) = —p (=10, —ISz<+ D)

Imgp'(2) =0 (p=0—c0o<2~1

Img' (2 =0 (F=h, — oozt o). 9

A conformal mapping of the band 0 =y =h on the upper semi-
plane (Fig. 2) is given by

= enz/h R (10)

In the semi~plane 7 > 0 we obtain the complex Keldysh-Sedov
boundary problem [3].

The unknown analytical function ¢'(z) should have singularities
of the order of x™M% at points z = I and z = +I approached from the
left and right, respectively, and the coefficients at these singularities
should~ in view of the symmetry of the problem—be equal,

A solution satisfying these conditions is in the form
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Using Egs. (8) and (1), we find that at the crack tips cy has singu-
larities in the form
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In accordance with 4] we have an equation
BAYe enllh——i 1y, X
P(E) (enz,/h+1 ) =% (13)

where K is the cohesion modulus.

Equation (13) determines the values of p corresponding to the
limiting equilibrium of the system of cracks under consideration.
After some elementary transformations we obtain an expression relating
the half-length of an equilibirum crack to p and b

h pt-+ K2/ nh
l=—ﬁ-lnm. (14}

At the limit, i.e., ath = =, we obtain an expression cited in

4],
i = 2K3/n?p? (15}

relating to an isolated Griffith crack.
It follows from Eq. (14) that for any finite h the pressure p cor=
responding to infinitely large crack lengths I approaches its critical
value
1
Pr = Vﬁ

K’

which increases with decreasing b, while from Eq. (15) it follows that
at large [ the pressure p — 0.

It follows from Fig, 3 that a system of Griffith cracks spaced at
2h intervals can exist only when p> py. At p < p, reversible cracks
close up. At equal values of p acting inside cracks, the length of an
isolated crack will be smaller than that of a crack in a system of
cracks. The pressure p which at a finite h corresponds to the limiting
equilibrium is larger for a system of cracks than for an isolated crack
(of the same length), this being the way in which the interaction of a
system of cracks is manifested.

From Eqs. (1) and (2) we obtain

o, = 2Reg’ (2) + Re {Zp” (s) + ¥ (],

0y = 2Req’ (z) — Re [Zp”" (2) -+ ¥ (9)]. (16)

Taking into account that Ogy = 0 aty = 0, we find that the hy-
pothesis [8] is equivalent to an equation

p’ ()P (=0 at y=0

which is rigorously satisfied only in the case of a single crack.
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In the case of a system of cracks Re [5p”'(2) -} *(2)] character-
izes the redistribution of stress due to the presence of adjacent cracks.
Let us find the values of the ratio 7/h at which the above obtained ap~
proximate solution may be used.

To this end let us formulate a problem for which an accurate
solution can be found.

Consider an infinitely elastic body containing a system of paral=-
lel Griffith cracks. Stresses acting in the body are such that along each
crack oy + oy = —2p. The cracklength and the spacing between cracks
are 2! and 2h, respectively, In view of the symmetry of the problem
let us consider only the band 0 =y = h.

The boundary conditions will be

Oy -+ 0y = —2p =0 —I<z<+

(y=0, y=h, ""°°<a:<+oo)

v=0{<y=0,~°°<x<vl, + 1 <o < 4 00)
y=h, —oo <4 o), an

When the problem is formulated in this way, its accurate solu~
tion is in the form of Eq. (11) which determines the function ¢'(z).
At y = 0 the values of the function Zg'* (z) -+ ¢’ (z) coincide
with the values of an ailalytical function zg"(z) + ¥'(2) in the region
in question, since z = z at y = 0, From Eq. (2) it is easy to obtain

Sxy = Im (29" () + ¥’ (3)]. 1s)
From the boundary condition Oy = 0 aty=h we have
Im [z (2) -+ ¥’ ()] = 2k Reg¢”’ (2) (19)

Aty = 0 from the condition ny =0 we have
Im [20" (z) + ¢’ (z)]=0. (20)

Let us denote by F() an analytical function corresponding to the
function z¢"(z) + y'(z). After mapping the band 0= y = h on the '
upper semi~plane n > 0, we obtain the Dirichlet problem with the fol-
lowing boundary conditions:

Im 7 (§) = u (§)
Im 7 (§ = 0

(— 0 <E<O)
SE<+ ). @1

Using (11) and following [2], we obtain a function w(§) in the
form

EELY
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The solution of the problem studied will be
2
Fo=—te—a{p=grr tiet 1@ @

It should be pointed out that the function x(£) has two branches
since it is described by an integral of the following type:

dx
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The above integral has several branches depending on the sign of 2
and A=ac — b%, At — 0 CE< (&), a< E <+ oo, when £ —
- E(a+al) +1>0, wehave
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The solution obtained should have no singularities at the crack
tips, Assuming &€ = a — s and £ = ¢ + s and doing some simple trans-
formations, it is easy to prove that this is so.

Figure 5 shows that along a segment of the real axis 1/u = § =
= g the function F(£) has a maximum at the point £ = 1 (which in the
plane x, y corresponds to the point z = 0).

When 7 is finjte and h — =, the following is trues
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passing in Eqgs. (23) and (24) to the limit at h — = and taking

into account Eq. (26), we obtain

F )y~ @1 n)e. (27)

Consequently, FE)=>0 ath — =, the solution obtained ap-
proaches the solution for a single Griffith crack.

In can be concluded from Fig. 6 that the approximate solution,
accurate to 10%, will be valid for ratios Z/h =< 0.5.
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