
J O U R N A L  O F  A P P L I E D  M E C H A N I C S  A N D  T E C H N I C A L  P H Y S I C S  119 

INTERACTION OF A SYSTEM OF GRIFFITH CRACKS IN AN ELASTO-BRITTLE 
MATERIAL 

P. A. Martynyuk 

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 5, pp. 163-166, 1966 

Problems of the theory of cracks have recently attracted a great 
deal of attention. Finding accurate solutions for systems of cracks pre- 
sents considerable mathematical difficulties. An approximate solution 
of a static problem of the theory of equilibrium cracks is given in [1]. 
The hypothesis formulated in [1] is used in this article in which the 
problem of interaction of Griffith cracks in an elasto-brittle material 
is analyzed and the accuracy of the solution obtained is estimated. 

Let an infinite isotropic body contain an infinitely large number 
of cracks of a length 2l, parallel to the axis of abscissas and spaced 
at a distance of 2h from each other. A constant pressure p is acting in- 
side each crack along the length 2l. In view of the symmetry of the 
system, our considerations may he confined to a band 0 -~ y <- h whose 
lower edge coincides with the longitudinal crack axis, its upper edge 
being halfway between two adjacent cracks. The problem is to find 
the relationship between p, h and ~ if aLl the elastic constants and the 
cohesion modulus are known. 

Let us consider plane deformation. In this case the stress tensor 
components o x Oy and o x. and displacement vector components u 
and v are expressed through two analytical functions ~ z )  and ~(z) and 
their derivatives by the Kolosov-Kuskhelishvili formulas: 

ox 4- ay = 2 [qp' (z) 4- cp' (z)], (t) 

% --  % + 2 i r  = 2 [:q/' (z) + 4' (~)l, (2) 

2p, (u + iv) = xq~ (z) --  zqg' (z) - - ~  (z) (• = 3--4v). (3) 

Here v is the Poisson ratio and ~ shear modulus. 
The boundary conditions will be 

% = - - p  ( u = 0 ,  - - l - . ~ z ~ < + l ) ,  (4) 

~ v = 0  ( ~ = 0 ,  ~ = h , - - ~ < z < 4 -  ~ ) .  (5) 

=o,  - ~ < z < - t ,  + / < z < 4 - ~ )  
y =  0 tu h, oo < x  < 4- oo). (6) 

The stress tensor components at infinity behave as 

~ij(r) = o ( r  -l) at r ~ O %  (~) 

Introducing in accordance with [1] an assumption 

o x = o v  at y =  0 ,  (8) 

we can formulate the problem in terms of one analytical function 

~'(z): 

FleT' (z) = --'12P ( y =  O, --  l ~.~ x ~ 4 -  l) 

ImqD'(z) = 0 ( y =  0 - -  o o < x < - -  l, 

+ t < x < +  ~) 
Iraqi'(z) = 0 ( y =  h, --  ~ < x < - U  oo). (9) 

A conformal mapping of the band 0 _~ y ~ h on the upper semi- 

plane (Fig. 2) is given by 

= e ~ . (10) 

In the  semi-plane ~ > 0 we obtain the complex Keldysh-Sedov 

boundary problem [3]. 
The unknown analytical function ~'(z) should have singularities 

of the order of x "l/z at points z = I and z = +l approached from the 
left and right, respectively, and the coefficients at these singularities 
should- in view of the symmetry of the problem-be  equal. 

A solution satisfying these conditions is in the form 

(p'(z) = - -  ~ { t - -  ~ e'*Z/~--a-'~ " 

( a=entlt~';) 

(1:) 

Using Eqs. (8) and (1), we find that at the crack tips Oy has singu- 

larities in the form 

N p 
% ( - - z - - ~ ) = % q + ~ ) =  tG 2 +o(~/,), 

[ h ~/z [ enZ/h--I )V2 
iV=pt~)  ~ _  . (12) 

In accordance with [4] we have an equation 

( h )V, ( er'U~'-- t ) 1/~ K 
P - -  e =uh + 1 = -~- , (13) 

where K is the cohesion modulus. 
Equation (13) determines the values of p corresponding to the 

limiting equilibrium of the system of cracks under consideration. 
After some elementary transformations we obtain an expression relating 
the half-length of an equilibirum crack to p and h 

h p~ -~- K e / r (14) 
1 = ~  In p2 _ K'a / gh �9 

At the limit, i. e. ,  at h --~ ~,, we obtain an expression cited in 

[4], 

I = 2K ~ / nZP ~" (15) 

relating to an isolated Griffith crack. 
It follows from Eq. (14) that for any finite h the pressure p cor- 

responding to infinitely large crack lengths I approaches its critical 

value 
t 

p . = - ~ - - ~  K , 

which increases with decreasing h, while from Eq, (15) it follows that 

at large l the pressure p "-~ O. 
It follows from Fig. 3 that a system of Griffith cracks spaced at 

2h intervals can exist only when p > p.. At p < p.  reversible cracks 
close up. At equal values of p acting inside cracks, the length of an 
isolated crack wiLl be smaller than that of a crack in a system of 
cracks. The pressure p which at a finite h corresponds to the limiting 

equilibrium is larger for a system of cracks than for an isolated crack 
(of the same length), this being the way in which the interaction of a 

system of cracks is manifested. 
From gqs. (1) and (2) we obtain 

% = 2Re~' (~) + Re 1 ~ "  (z) + r (--)], 

~x = 2Re? '  (z) --  Re [5qV' (z) + ~' (z)]. (16) 

Taking into account that Oxy = 0 at y = 0, we find that the hy- 

pothesis [8] is equivalent to an equation 

gq/' (z) -t- ~0' (z) = 0 at y = 0  

which is rigorously satisfied only in the case of a single crack. 
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In the case of a system of cracks Re [gcp"(z) + ~/(z}] character- 
izes the redistribution of stress due to the presence of adjacent cracks. 
Let us find the values of the ratio l /h  at which the  above obtained ap- 
proximate solution may he used. 

To this end let us formulate a problem for which an accurate 
solution can be found. 

Consider an infinitely elastic body containing a system of paral- 
lel Griffith cracks. Stresses acting in the body are such that along each 
crack o x + Oy = -2p .  The crack length and the spacing between cracks 
are 2~ and 2h, respectively. In view of the symmetry of the problem 
let us consider only the band 0 ~ y -< h. 

The boundary conditions will be 

Ox + ~ y ~ -  --219 (y = O, ~ l ~.~ x . ~ - J c  l) 
axu = 0 (g = O, y = h, - -  oo ~ x ~.  + oo) 

v=o{(Y=O, --~<x<--t, +z<~<+~) 
(y=h,  --oo<z<+ oo). (17) 

When the problem is formulated in this way, its accurate solu- 

tion is in the form of Eq. (II) which determines the function ~'(z). 
At y = 0 the values of the function gq~" (z) + ~' (z) coincide 

with the values of an analytical function zr + r in the region 

in question, since z = ~ at y = 0, From Eq. (2) it is easy to obtain 

a= u = l m  [~q~" (z) + %b' (z)]. (18) 

From the boundary condition Oxy = 0 at y = h we have 

Im [zcp" (z) q - ~ '  (z)] ~ 2h Req~" (z) (19) 

At y = 0 from the condition Oxy = 0 we have 

Im [zep" (z) + q/ (z)]=O. (20) 

Let us denote by F(r an analytical function corresponding to the 
function zO"(z) + ~'(z). After mapping the band 0 - y -< h on the 
upper semi-plane rl > 0, we obtain the Dirichlet problem with the fol- 
lowing boundary conditions: 

I m F ( g ) =  u(~) ( - - o o < [ < 0 )  

[m F (~) = 0 (0 < ~ < + oo).  (2~) 

Using (11) and following [2], we obtain a function u(g) in the 

form 

r162 ( A = a  + a - ~  
u ( ~ ) = + . [ 2 - - A l  { ~ 2 _ ~ A §  \ A ~ 2  )' (22) 

The solution of the problem studied will be 

It should be pointed out that the function X(r has two branches 
since it is described by an integral of the following type: 

1 / ~ +  6~+~ 

The above integral has several branches depending on the sign of a 
a n d & = a c -  b z. A t - -  c ~ < [ < ( a - 1 ) ,  a < ~ < +  ~o, whell [2__ 

- [ ( a +  a -1) + t > 0 ,  we have 

1 

[ a~'-~S~ i + ~/V~ff~i~ t -- In ~] (24) 

At 1 / a < g <  a, when [ 2 _  ~ ( a +  t /a)-}- i < 0 ,  we have 

- - t  

[ are sin A -- 2F. -1 2~ - -  A "] • 

The solution obtained should have no singularities at the crack 
tips. Assuming ~ = a - s and ~ = a + s and doing some simple trans- 

formations, it is easy to prove that this is so. 
Figure 5 shows that along a segment of the real axis 1 / a  ~ ~ ~- 

-< a the function F(g) has a maximum at the point ~ = 1 (which in the 

plane x, y corresponds to the point z = 0). 
When l is finite and h --* ~, the following is true: 

S ~ g3 84 
a ~ t -~- s + --2(-. + -gf-. q 4! 

82 $3 84 
--~i--s +-~f -- ~, +TI (2G) 
a 

Passing in Eqs. (23) and (24) to the limit at h -~ ~o and taking 
into account Eq. (26), we obtain 

~ ( 1 ) ~  (t / hp. (27) 

consequently, F(;) -+ 0 at h --" *0, the solution obtained ap- 
proaches the solution for a single Griffith crack. 

In can be concluded from Fig. 6 that the approximate solution, 
accurate to 10%, will be valid for ratios l /h  -< 0.5. 
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