INTERACTION OF A SYSTEM OF GRIFFITH CRACKS IN AN ELASTO-BRITTLE

MA TERIAL

P. A. Martynyuk

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 5, pp. 163-166, 1966

Problems of the theory of cracks have recently attracted a great deal of attention. Finding accurate solutions for systems of cracks presents considerable mathematical difficulties. An approximate solution of a static problem of the theory of equilibrium cracks is given in [1]. The hypothesis formulated in [1] is used in this aticle in which the problem of interaction of Griffith cracks in an elasto-brittle material is analyzed and the accuracy of the solution obtained is estimated.

Let an infinite isotropic body contain an infinitely large number of cracks of a length $2 l$, parallel to the axis of abscissas and spaced at a distance of 2 h from each other. A constant pressure p is acting inside each crack along the length $2 l$. In view of the symmetry of the system, our considerations may be confined to a band $0 \leq y \leq h$ whose lower edge coincides with the longitudinal crack axis, its upper edge being halfway between two adjacent cracks. The problem is to find the relationship between p, h and l if all the elastic constants and the cohesion modulus are known.

Let us consider plane deformation. In this case the stress tensor components σ_{x}, σ_{y}, and $\sigma_{x y}$ and displacement vector components u and v are expressed through two analytical functions $\varphi(z)$ and $\psi(z)$ and their derivatives by the Kolosov-Kuskhelishvili formulas:

$$
\begin{gather*}
\sigma_{x}+\sigma_{y}=2\left[\varphi^{\prime}(z)+\overline{\varphi^{\prime}(z)}\right] \tag{1}\\
\sigma_{y}-\sigma_{x}+2 i \sigma_{x y}=2\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right] \tag{2}\\
2 \mu(a+i v)=x \varphi(z)-\overline{z \varphi^{\prime}(z)}-\overline{\psi(z)} \quad(x=3-4 v) \tag{3}
\end{gather*}
$$

Here ν is the Poisson ratio and μ shear modulus.
The boundary conditions will be

$$
\begin{align*}
& \sigma_{y}=-p(y=0, \quad-l \leqslant x \leqslant+l), \tag{4}\\
& \sigma_{x y}=0 \quad(y=0, \quad y=h,-\infty<x<+\infty) \tag{5}\\
& v=0 \quad\{(y=0,-\infty<x<-l,+l<x<+\infty) \tag{6}\\
&(y=h,-\infty<x<+\infty) .
\end{align*}
$$

The stress tensor components at infinity behave as

$$
\begin{equation*}
\sigma_{i j}(r)=o\left(r^{-1}\right) \quad \text { at } \quad r \rightarrow \infty \tag{7}
\end{equation*}
$$

Introducing in accordance with [1] an assumption

$$
\begin{equation*}
\sigma_{x}=\sigma_{y} \quad \text { at } \quad y=0 \tag{8}
\end{equation*}
$$

we can formulate the problem in terms of one analytical function $\varphi^{\prime}(z)$:

$$
\begin{align*}
& \operatorname{Re} \varphi^{\prime}(z)=-1 / 2 p \quad(y=0,-l \leqslant x \leqslant+l) \\
& \operatorname{Im} \varphi^{\prime}(z)=0 \quad(y=0-\infty<x<-l \\
& \quad+l<x<+\infty) \\
& \operatorname{Im} \varphi^{\prime}(z)=0 \quad(y=h,-\infty<x<+\infty) \tag{9}
\end{align*}
$$

A conformal mapping of the band $0 \leq y \leq h$ on the upper semiplane (Fig. 2) is given by

$$
\begin{equation*}
\zeta=e^{\pi z / h} \tag{10}
\end{equation*}
$$

In the semi-plane $\eta>0$ we obtain the complex Keldysh-Sedov boundary problem [3].

The unknown analytical function $\varphi^{\prime}(z)$ should have singularities of the order of $x^{-1 / 2}$ at points $z=l$ and $z=+l$ approached from the left and right, respectively, and the coefficients at these singularities should - in view of the symmetry of the problem-be equal.

A solution satisfying these conditions is in the form

$$
\begin{gather*}
\varphi^{\prime}(z)=-\frac{p}{2}\left\{1-\frac{\sqrt{a}}{a+1}\left[\sqrt{a}\left(\frac{e^{\pi z / h}-a^{-1}}{e^{\pi z / h}-a}\right)^{1 / 2}+\right.\right. \\
\left(a=e^{\pi / h!}\right) \\
\left.\left.+\frac{1}{\sqrt{a}}\left(\frac{e^{\pi z / h}-a}{e^{\pi z / h}-a^{-1}}\right)^{1 / 2}\right]\right\} \tag{11}
\end{gather*}
$$

Using Eqs. (8) and (1), we find that at the crack tips σ_{y} has singularities in the form

$$
\begin{align*}
\sigma_{y}(-l-x) & =\sigma_{y}(l+x)=\frac{N}{\sqrt{x}}-\frac{p}{2}+O\left(x^{3 / 2}\right), \\
N & =p\left(\frac{h}{\pi}\right)^{1 / 2}\left(\frac{e^{\pi l / h}-1}{e^{\pi l / h}+1}\right)^{1 / 2} \tag{12}
\end{align*}
$$

In accordance with [4] we have an equation

$$
\begin{equation*}
p\left(\frac{h}{\pi}\right)^{1 / 2}\left(\frac{e^{\pi l / h}-1}{e^{\pi l / h}+1}\right)^{1 / 2}=\frac{K}{\pi} \tag{13}
\end{equation*}
$$

where K is the cohesion modulus,
Equation (13) determines the values of p corresponding to the limiting equilibrium of the system of cracks under consideration, After some elementary transformations we obtain an expression relating the half-length of an equilibirum crack to p and h

$$
\begin{equation*}
l=\frac{h}{\pi} \ln \frac{p^{2}+K^{2} / \pi h}{p^{2}-K^{2} / \pi h} \tag{14}
\end{equation*}
$$

At the limit, i.e., at $\mathrm{h} \rightarrow \infty$, we obtain an expression cited in [4],

$$
\begin{equation*}
l=2 K^{2} / \pi^{2} p^{2} \tag{15}
\end{equation*}
$$

relating to an isolated Griffith crack.
It follows from Eq. (14) that for any finite h the pressure p cor= responding to infinitely large crack lengths l approaches its critical value

$$
p_{*}=\frac{1}{\sqrt{\pi h}} K
$$

which increases with decreasing h, while from Eq. (15) it follows that at large l the pressure $p \rightarrow 0$.

It follows from Fig. 3 that a system of Griffith cracks spaced at $2 h$ intervals can exist only when $p>p_{*}$. At $p<p_{w}$ reversible cracks close up. At equal values of p acting inside cracks, the length of $a n$ isolated crack will be smaller than that of a crack in a system of cracks. The pressure p which at a finite h corresponds to the limiting equilibrium is larger for a system of cracks than for an isolated crack (of the same length), this being the way in which the interaction of a system of cracks is manifested.

From Eqs. (1) and (2) we obtain

$$
\begin{align*}
& \sigma_{y}=2 \operatorname{Re} \varphi^{\prime}(z)+\operatorname{Re}\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right] \\
& \sigma_{x}=2 \operatorname{Re} \varphi^{\prime}(z)-\operatorname{Re}\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right] \tag{16}
\end{align*}
$$

Taking into account that $\sigma_{x y}=0$ at $y=0$, we find that the hypothesis [8] is equivalent to an equation

$$
\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)=0 \quad \text { at } \quad y=0
$$

which is rigorously satisfied only in the case of a single crack.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Fig. 5

Fig. 6

In the case of a system of cracks $\operatorname{Re}\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right]$ characterizes the redistribution of stress due to the presence of adjacent cracks. Let us find the values of the ratio I / h at which the above obtained approximate solution may be used.

To this end let us formulate a problem for which an accurate solution can be found.

Consider an infinitely elastic body containing a system of parallel Griffith cracks. Stresses acting in the body are such that along each crack $\sigma_{x}+\sigma_{y}=-2 p$. The cracklength and the spacing between cracks are $2 l$ and $2 h$, respectively, In view of the symmetry of the problem let us consider only the band $0 \leq y \leq h$.

The boundary conditions will be

$$
\begin{gather*}
\sigma_{x}+\sigma_{y}=-2 p \quad(y=0,-l \leqslant x \leqslant+l) \\
\sigma_{x y}=0 \quad(y=0, y=h,-\infty<x<+\infty) \\
v=0\left\{\begin{array}{r}
(y=0,-\infty<x<-l,+l<x<+\infty) \\
(y=h,-\infty<x<+\infty)
\end{array}\right. \tag{17}
\end{gather*}
$$

When the problem is formulated in this way, its accurate solution is in the form of Eq. (11) which determines the function $\varphi^{\prime}(z)$.

At $y=0$ the values of the function $\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)$ coincide with the values of an analytical function $z \varphi^{\prime \prime}(z)+\psi^{\prime}(z)$ in the region in question, since $z=\bar{z}$ at $y=0$. From Eq. (2) it is easy to obtain

$$
\begin{equation*}
\sigma_{x y}=\operatorname{Im}\left[\bar{z} \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right] \tag{18}
\end{equation*}
$$

From the boundary condition $\sigma_{x y}=0$ at $y=h$ we have

$$
\begin{equation*}
\operatorname{Im}\left[z \varphi^{\prime \prime}(z)+\psi^{\prime}(z)\right]=2 h \operatorname{Re} \varphi^{\prime \prime}(z) \tag{19}
\end{equation*}
$$

At $y=0$ from the condition $\sigma_{x y}=0$ we have

$$
\begin{equation*}
\operatorname{Im}\left[z \varphi^{\prime \prime}(z)+\varphi^{\prime}(z)\right]=0 \tag{20}
\end{equation*}
$$

Let us denote by $F(\zeta)$ an analytical function corresponding to the function $z \varphi^{\prime \prime}(z)+\psi^{\prime}(z)$. After mapping the band $0 \leq y \leq h$ on the upper semi -plane $\eta>0$, we obtain the Dirichlet problem with the following boundary conditions:

$$
\begin{array}{cc}
\operatorname{Im} F(\xi)=u(\xi) & (-\infty<\xi \leqslant 0) \\
\operatorname{Im} F(\xi)=0 & (0 \leqslant \xi<+\infty) \tag{21}
\end{array}
$$

Using (11) and following [2], we obtain a function $u(\xi)$ in the form

$$
\begin{equation*}
u(\xi)=\frac{p}{4} \pi[2-A] \frac{\xi(\xi+1)}{\left[\xi^{2}-\xi A+1\right]^{3 / 2}} \quad\binom{A=a+a^{-1}}{A \geqslant 2} \tag{22}
\end{equation*}
$$

The solution of the problem studied will be

$$
\begin{equation*}
F(\zeta)=-\frac{p}{4}[2-A]\left\{\frac{2 \zeta}{\xi^{2}-\zeta A+1}+\zeta(\zeta+1) \times(\zeta)\right\} \tag{23}
\end{equation*}
$$

It should be pointed out that the function $\chi(\zeta)$ has two branches since it is described by an integral of the following type:

$$
\int \frac{d x}{\sqrt{a x^{2}+b x+c}}
$$

The above integral has several branches depending on the sign of a and $\Delta=a c-b^{2}$. At $-\infty<\xi<\left(a^{-1}\right), a<\xi<+\infty$, when $\xi^{2}-$ $-5\left(a+a^{-1}\right)+1>0$, we have

$$
\begin{gather*}
x(\xi)=\frac{1}{\left(\xi^{2}-\xi A+1\right)^{3 / z}} \times \\
\times\left[2 \ln \frac{\sqrt{a \xi=1}+\sqrt{\xi / a-1}}{\sqrt{\xi-a}+\sqrt{\xi-a^{-1}}}-\ln \xi\right] . \tag{24}
\end{gather*}
$$

At $1 / a<\xi<a$, when $\xi^{2}-\xi(a+1 / a)+1<0$, we have

$$
\begin{align*}
& \chi(\xi)=\frac{-1}{\left(\xi^{2}-\xi A+1\right)\left(-\xi^{2}+\xi A-1\right)^{1 / 2}} \times \\
& \times\left[\arcsin \frac{A-2 \xi^{-1}}{\sqrt{A^{2}-4}}-\arcsin \frac{2 \xi-A}{\sqrt{A^{2}-4}}\right] \tag{25}
\end{align*}
$$

The solution obtained should have no singularities at the crack tips. Assuming $\xi=a-s$ and $\xi=a+s$ and doing some simple trans formations, it is easy to prove that this is so,

Figure 5 shows that along a segment of the real axis $1 / a \leq \xi \leq$ $\leq a$ the function $F(\xi)$ has a maximum at the point $\xi=1$ (which in the plane x, y corresponds to the point $z=0$).

When l is finite and $h \rightarrow \infty$, the following is true:

$$
\begin{align*}
& a \approx 1+s+\frac{s^{2}}{2!}+\frac{s^{3}}{3!}+\frac{s^{4}}{4!} \\
& \frac{1}{a} \approx 1-s+\frac{s^{2}}{2!}-\frac{s^{3}}{3!}+\frac{s^{4}}{4!} \tag{26}
\end{align*}
$$

Passing in Eqs. (23) and (24) to the limit at $h \rightarrow \infty$ and taking into account Eq. (26), we obtain

$$
\begin{equation*}
F(1) \sim(l / h)^{2} \tag{27}
\end{equation*}
$$

Consequently, $E(5) \rightarrow 0$ at $h \rightarrow \infty$, the solution obtained ap proaches the solution for a single Griffith crack.

In can be concluded from Fig. 6 that the approximate solution, accurate to 10%, will be valid for ratios $l / \mathrm{h} \leq 0.5$.

REFERENCES

1. V. M. Kuznetsov, "One case of the equilibrium of a system of cracks in an elasto-brittle material," PMTF [Journal of Applied Mechanics and Technical Physics], no. 5, 1966.
2. N. I. Muskhelishvili, Some Fundamental Problems of the Mathenatical Theory of Elasticity [in Russian], 4th Edition, Izd-vo, AN SSSR, 1954.
3. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of Complex Variables [in Russian], 2nd Edition, Fizmatgiz, 1958.
4. G. I. Barenblatt, "Mathematical theory of equilibrium cracks formed in brittle fracture" [in Russian], PMTF, no. 4, 1961.
